Навигация
Главная
Публикации
 
Рекомендуем
Что такое жидкое стекло
Надувная индустрия
Термодревесина
Композитное топливо
Что такое электромобиль
Принцип инверсии
Швейная промышленность
Промышленный шум
Стекло вручную
Вакуумная упаковка
Увлажнитель воздуха
 
Калькулятор НДС онлайн: nds.com.ru

Главная  Публикации 


Коррозионная стойкость цинксодержащих материалов


К кровельным материалам предъявляется два главных требования: долговечность и удовлетворительная механическая обработка. Цинк как материал для противокоррозионной защиты используется достаточно давно. В основном он используется в качестве цинкового покрытия, опыт применения листового цинка достаточно ограничен. Основная масса кровельных материалов выполняется из оцинкованной стали, в том числе окрашенной.


Долговечность оцинкованной стали обусловлена сохранностью слоя цинка и составляет в зависимости от степени агрессивности атмосферы 5–15 лет. Несмотря на то что цинк является достаточно коррозионно-активным материалом, он быстро покрывается пленкой продуктов коррозии, которая тормозит дальнейшее коррозионное разрушение материала.


Оцинкованная сталь хорошо профилируется, а чистый цинк обладает низкими механическими характеристиками и из-за повышенной хрупкости практически не профилируется. Относительно недавно был разработан хорошо профилируемый сплав на основе цинка — так называемый цинк-титан или D-цинк (деформируемый цинк). Хорошие механические характеристики были достигнуты с помощью микролегирования. Этот хорошо профилируемый пластичный материал применяется самостоятельно вместо оцинкованной стали.


Так как основное назначение цинк-титана — изготовление кровельных и фасадных панелей, то для определения долговечности необходимо знать его коррозионную стойкость в различных условиях эксплуатации.


Для ускоренного сравнения коррозионных характеристик исследуемых материалов: цинк-титана, металлургического цинка и оцинкованной стали, — были проведены исследования в нейтральных солевых растворах. В процессе коррозионных испытаний наблюдается некоторое торможение коррозионного процесса, которое, по-видимому, вызвано формированием слоя продуктов коррозии. Наименьшей коррозионной стойкостью характеризуется оцинкованная сталь, а коррозионная стойкость цинк-титана несколько выше, чем у металлургического цинка. Более высокую коррозионную стойкость цинк-титана можно объяснить формированием более равномерных солевых слоев.


Листы цинка используются при изготовлении декоративных панелей и кассет для устройства навесных фасадов зданий. Конструкция таких фасадов включает в себя различные утеплители, которые очень часто непосредственно контактируют с металлом. Кроме того, в этих конструкциях возникают условия для образования конденсата, который при взаимодействии с материалом утеплителя создает среду, обладающую различной величиной pH. В зависимости от материала утеплителя pH конденсата может быть от 6 до 9,5. С 30-х годов в литературе приводится зависимость скорости коррозии цинка от pH среды. Эти результаты были получены в специально очищенной обессоленной воде, определены границы относительной устойчивости цинка (наибольшая коррозия происходит при pH<6 и pH>11, тогда как внутри этого интервала скорость коррозии невелика). Данные позволяют говорить о том, что цинк-титан устойчив к коррозии в более широком диапазоне pH, чем чистый цинк.


Реальная эксплуатация цинк-титана также демонстрирует бульшую коррозионную стойкость этого материала по сравнению с оцинкованной сталью — за 6 лет эксплуатации в условиях среднеагрессивной городской атмосферы панель цинк-титана практически не подверглась коррозии, в то время как на 60 % поверхности оцинкованной стали заметны следы продуктов коррозии железа.


Так как скорость коррозии — вполне определенная величина, то срок службы цинксодержащих материалов (оцинкованной стали, цинк-татана) зависит от толщины материала. Но необходимо учитывать, что проблема долговечности этих материалов может быть частично решена не только увеличением толщины, но и дополнительным легированием. Введение в расплав небольших количеств алюминия улучшает процесс цинкования (повышается жидкотекучесть расплава, уменьшается окисление), замедляет реакцию взаимодействия между сталью и жидким цинком и препятствует образованию промежуточного железоцинкового сплава. В этом случае толщина слоя интерметаллического соединения в покрытии не превышает 1–2 мкм при общей толщине покрытия до 40 мкм.


Необходимо указать, что существенное увеличение срока службы металлоконструкций возможно при замене цинковых покрытий на цинк-алюминиевые или алюмоцинковые покрытия типа «гальвалюм» или «гальфан». Применение таких покрытий позволяет при равных условиях добиться увеличения долговечности стальных изделий до 30–50 лет в зависимости от условий эксплуатации.


Алюмоцинковое покрытие («гальвалюм») представляет собой сплав, состоящий из 55 % алюминия, 1,6 % кремния, остальное — цинк. Такой состав покрытия обеспечивает надежную противокоррозионную защиту стальной основы. Алюминий образует устойчивый оксид на поверхности листа и интерметаллическое соединение с кремнием, которые обладают высокой коррозионной стойкостью и, кроме того, способствуют особо прочному сцеплению покрытия с основой, что препятствует проникновению окисляющей атмосферы вглубь металла, создавая таким образом надежный защитный барьер. В частности, «гальвалюм» AZ185 имеет толщину 25 мкм (185 г/кв. м) и может эксплуатироваться в промышленной атмосфере средней агрессивности не менее 20 лет до появления продуктов коррозии на 5 % поверхности. В результате проведенных исследований и оценки качества покрытия было установлено, что испытанный материал устойчив к атмосферной коррозии и может эксплуатироваться в условиях промышленной атмосферы средней агрессивности сроком не менее 40 лет.


Важным направлением развития является совершенствование существующих типов защитных покрытий, получаемых из металлических расплавов. Современным требованиям отвечает стальной лист с горячим покрытием нового поколения — алюмоцинковым, с повышенной массовой долей алюминия в покрытии. Еще больше увеличить коррозионную стойкость алюмоцинкового покрытия можно микролегированием, которое улучшает протекторное действие покрытия по отношению к стали. На кафедре коррозии МИСиС выполнен большой объем фундаментальных исследований по термодинамике и механизму депассивирующего влияния легирующих металлов на алюминий. Результаты исследований позволили определить механизм активирующего действия Zn, Sn, In на алюминий. Установлено, что достаточно легировать алюмоцинковый сплав оловом в количестве 0,1 масс. %, чтобы увеличить защитную способность покрытия минимум на 50 %. Следует отметить, что микролегированные алюмоцинковые покрытия более коррозионностойки, чем «гальвалюм».


 

Доступное жилье: проблемы и перспективы. Кто поможет пострадавшим инвесторам строительства?. Внесены коррективы в Программу развития петербургских гостиниц. Дополнительные льготы для инвесторов. Закон принят, сомнения остаются. Добавки для бетона. Игра в параметры, или высоты «Лахты».


Главная  Публикации 

Яндекс.Метрика
Copyright © 2006 - 2024 All Rights Reserved