Навигация
Главная
Публикации
 
Рекомендуем
Что такое жидкое стекло
Надувная индустрия
Термодревесина
Композитное топливо
Что такое электромобиль
Принцип инверсии
Швейная промышленность
Промышленный шум
Стекло вручную
Вакуумная упаковка
Увлажнитель воздуха
 
Калькулятор НДС онлайн: nds.com.ru

Главная  Публикации 


Использование промышленных отходов в производстве бетона и сборного железобетона в России


В качестве сырья для производства строительных материалов и изделий, в том числе и бетона, используют золу и золошлаковые отходы, образующиеся в результате сжигания каменного угля на теплоэлектростанциях (ТЭС). Однако объем используемых промышленных отходов пока незначителен — 5–6% от их выхода. По различным данным в отвалах скопилось более 1 млрд. т золошлаковых отходов. Их применение могло позволить произвести колоссальные объемы стройматериалов. Огромен и экологический эффект, получаемый при утилизации отходов.


Наиболее дефицитным и энергоемким компонентом бетона является цемент. Многолетние теоретические и экспериментальные исследования ведущих научно-исследовательских институтов и других организаций доказали высокую эффективность внедрения в производство бетона и сборного железобетона золы-уноса и золошлаковых отходов ТЭС. Бетонные смеси с добавкой золы обладают большей вязкостью, лучшими транспортабельностью и перекачиваемостью, меньшими водоотделением и расслоением.


Использование золы-уноса и золошлаковых отходов ТЭС в керамзитобетоне вместо кварцевого песка снижает его плотность на 40–80 кг/куб. м и позволяет сократить расход цемента на 15–50 кг в расчете на 1 куб. м бетона. При этом повышаются коррозионная стойкость и теплофизические показатели бетона. Применение золы-уноса обеспечивает максимальную экономию цемента (10–25%, в зависимости от вида, каче ства заполнителей и типа конструкций).


Целесообразность создания новых материалов и изделий на базе отходов и выбор вариантов взаимозаменяемости материалов определяется расчетом эффективности капитальных вложений по минимуму приведенных затрат.


В связи с тем, что большинство тепловых электростанций европейской части России оборудовано системами гидрозолоудаления, получаемые в них зола и золо-шлаковые смеси (ЗШС) используются в основном как мелкий заполнитель для бетонов в производстве керамзито- и гипсобетона, низкомарочных растворов и бетонов, а также в дорожном строительстве. Для более эффективного использования отходов ТЭС в качестве активной добавки в производстве бетонных, сборных железобетонных строительных деталей и конструкций в последние годы на европейской части России сооружены установки сухого золоотбора.


Таблица 1. Влияние золы на прочность тяжелого бетона классов В7,5–В30


Класс бетона/марка


Содержание компонентов в 1 куб. м


Экономия


цемента


(кг /%) бетонной


смеси (кг/куб. м)


В/В


Плотность


Предел прочности бетона при сжатии (МПа/%)


цемент


зола


песок


щебень


вода


Твердение


после ТВО (сут.)


Твердение в нормальных


условиях (28 сут.)


1


28


В7.5/М100


208


175


70


802 762


1156


1 176


202


195


33/16


0,97


0,8


2 366


2 373


8,1/100


9,9/122


11,4/100


14,2/125


10,6/100


12,2/115


В15/КВ. М00


288


242


90


719


659


1 173


1 197


195


191


46/16


0,68


0,57


2 375


2 379


14,7/100


16,6/113


22,4/100


25,7/115


21,3/100


24,1/100


В25/КУБ. М50


341


286


110


693


625


1 179


1 200


190


190


54/16


0,55


0,5


2 396


2 406


21,9/100


22,4/102


32,4/100


34,6/107


30,3/100


32,4/108


В30/М400


460


390


140


617


522


1 145


1 168


191


195


70/15


0,41


0,37


2 413


2 415


29,4/100


29,7/101


43,1/100


45,2/105


40,7/100


41,5/102


При участии профессора М. А. Фахратова использовали золу в бетонах классов В7,5 — ВЗО (табл. 1), приготавливаемых из бетонной смеси подвижностью П-1 на портландцементе М400. Золу вводили в бетон взамен части мелкого заполнителя с одновременной экономией части цемента. Рациональное содержание золы в составе бетона принимали в соответствии с теоретическими положениями физико-химической механики высококонцентрированных дисперсных систем [1, 2] и конкретными характеристиками цемента и золы.


Возможность использования золы в бетонах различных классов оценивалась путем испытания образцов-кубов с ребром 10 см на прочность при сжатии в возрасте 1 и 28 суток после тепловой обработки пропариванием, а также в возрасте 28 суток после твердения в нормальных условиях.


Проведенные промышленные испытания и производственное внедрение показали, что использование золы в тяжелом бетоне классов В7,5 — ВЗО позволяет экономить 15–16% цемента. При этом в области постоянства водопотребности бетонной смеси ее водосодержание уменьшается на 2–3,5% с повышением прочности бетона на 2–25%, а при расходе цемента 460 кг/куб. м водопотребность бетонной смеси увели чивается на 2% с сохранением прочности бетона на уровне прочности бетона контрольного состава. Таким образом, при использовании золы ТЭС в тяжелых бетонах в зависимости от качества цемента и золы экономится 15–20% цемента без снижения прочности бетона, но наибольший эффект достигается в бетонах низких и средних классов В7,5 — В25 [3, 4, 5].


Опыт работы передовых предприятий демонстрирует, что рациональное использование золошлаковых отходов позволяет изготавливать широкий ассортимент тяжелых и ячеистых бетонов, легких заполнителей, вяжущих и других материалов. За счет их широкого применения сокращается объем использования природного сырья, экономятся цементный клинкер и топливно-энергетические ресурсы.


Анализ данных в литературных источниках показывает, что среди факторов, влияющих на коррозию арматуры и бетона с использованием зол и ЗШС, основными являются следующие: - соотношение золы и цемента в золобетоне; - содержание в золе несгоревших углистых остатков, стеклофазы, сернистых соединений; - гидравлическая активность золы.


Исследования доказывают, что правильный подбор состава бетона позволит обеспечить первоначальную пассивность арматуры в бетоне. Дальнейшая ее сохранность будет определяться проницаемостью бетона, толщиной защит ного слоя до арматуры и условиями эксплуатации конструкций.


В настоящее время проблема снижения потребления цемента и энергетических ресурсов в строительной индустрии, а также интенсификация производства бетона и сборного железобетона при сохранении или улучшении проектных свойств в изделиях и конструкциях связаны с использованием некоторых минеральных добавок в чистом виде или в комплексе с химическими. В качестве минеральной добавки и вяжущего вещества для бетона наиболее эффективны доменные гранулированные шлаки, обладающие способностью к самостоятельному гидратационному твердению.


Анализ состояния проблемы использования минеральных добавок к вяжущим веществам для бетона показал, что этот класс добавок, являющихся в основном вторичным сырьем (доменные гранулированные шлаки, золы и золошлаковые смеси ТЭС), позволяет получать многокомпонентные системы с определенными эксплуатационными характеристиками, а также способствует созданию безотходных технологий и улучшению экологического состояния окружающей среды. Однако многокомпонентные цементы характеризуются в основном пониженной прочностью (на 1–2 марки), что сдерживает широкое использование минеральных добавок в производстве бетона и сборного железобетона.


Важным резервом повышения эффективности использования тонкомолотых доменных гранулированных шлаков в производстве бетона и железобетона является применение шлаков с оптимальной дисперсностью, имеющей функциональную зависимость от дисперсности цемента. Введение в бетон тонкомолотого шлака в количестве 40–60% вместо эквивалентной части цемента позволяет получать бетоны, прочность которых в 1,5–2 раза выше прочности бетонов на промышленно изготовленных цементах. Бетоны с добавкой шлака характеризуются повышенной сульфатостойкостью, удовлетворительной морозостойкостью и рядом других положительных свойств.


Более высокая эффективность использования тонкомолотых доменных гранулированных шлаков в бетонах достигается при их комплексном применении с химическими добавками (суперпластификаторами, пластификаторами и ускорителями твердения). Такая технология использования тонкомолотого шлака позволяет получать плотные бетоны марок 500–800 с расходом клинкерного компонента в пределах 200 кг/куб. м, что обусловлено проявлением эффекта упорядочения структуры при твердении многокомпонентных систем с низким водосодержанием.


Технологию использования тонкомолотого доменного гранулированного шлака внедрили на заводе стройматериалов и заводе крупных деталей Тульской области.


В процессе внедрения была выпущена и испытана опытная партия изделий (дома серии 111-83).


В состав тяжелого бетона класса В15 вводился тонкомолотый доменный шлак в количестве 20–70%. Все составы бетона готовились с добавкой суперпластификатора С-3 0,4% от массы цемента. Использовался портландцемент марки 400 (ГОСТ 10178-85) Михайловского цементного завода с содержанием доменного шлака 20%. Тепловлажностная обработка бетона осуществлялась по режиму 3+3+6+2 час. при температуре изотермического прогрева 85–90 0С. Результаты испытаний образцов бетона с тонкомолотым доменным шлаком приведены в таблице 2.


Таблица 2. Результаты испытаний образцов бетона с тонкомолотым доменным шлаком


Содержание вяжущего


Дисперсность шлака


В/Ц


ОК (мм)


Прочность


при сжатии


через 4 ч. после ТВО (МПа/%)


Цемент


(кг/куб. м)


Шлак


кг/ куб. м


% от массы цемента


290





0,48


23


14,4/100


232


58


20


225


0,46


25


17,1/119


174


116


40


225


0,44


20


17,5/122


116


174


60


225


0,46


30


15,5/107


290





0,46


25


17,4/100


174


116


40


225


0,42


25


18,8/108


116


174


60


225


0,46


25


15,6/90


116


174


60


470


0,38


25


26,3/151


87


203


70


470


0,4


25


20,6/119


Результаты испытаний показывают, что за счет использования грубодисперсного доменного гранулированного шлака снижается расход цемента до 40% с одновременным повышением прочности на 8%, а при использовании тонкодисперсного шлака экономится 60–70% цемента при одновременном повышении прочности бетона до 50%.


Грубодисперсный шлак получали на действующей помольной установке в однокамерной шаровой мельнице по замкнутому циклу завода стройматериалов Тульской области, а тонкодисперсный на Косогорском цементном заводе. Тонкомолотый шлак выпускается в соответствии с ТУ 21-20-61-85 «Шлак молотый для производства шлакощелочного вяжущего». Его дисперсность должна составлять 300+15 кв. м/кг, однако в настоящее время она находится на уровне 210–240 кв. м/кг. Увеличение дисперсности шлака до оптимальной величины 420–470 кв. м/кг можно осуществить использованием при помоле шлака суперпластификатора С-3.


Литература 1. Урьев Н. Б. «Высококонцентрированные дисперсные системы». М., 1980 г. 2. Комар А. Г., Величко Е. Г. «Основы формирования структуры цементного камня с минеральными добавками». Сб. «Теория, производство и применение искусственных строительных конгломератов». Владимир, 1982 г., с. 162–166. 3. Фахратов М. А., Калыгин А. А., Горшаков В. Б., Красненков С. И., Апраилов Р. А., Юсупов Х. Ю. «Опыт использования золы-уноса и золошлаковых отходов ТЭС на предприятиях строительной индустрии концерна «Россевзапстрой». Научно-технический информационный сборник. № 2., 1991 г., с. 28–32. 4. Фахратов М. А. «Применение золы и шлаков в целях экономии цемента в организациях Минсевзапстроя РСФСР». Научно-технический информационный сборник. № 3, 1990 г., с. 11–12. 5. Кальгин А. А., Фахратов М. А., Кикава О. Ш., Баев В. В. «Промышленные отходы в производстве строительных материалов». М., 2002 г.


 

Простые истины о плоской кровле. Новые продукты ISOVER: европейские стандарты качества для российского строительного рынка. Высотное строительство: как обеспечить пожаробезопасность. Материалы максит для внутренней отделки. Проблемы энергосбережения в зданиях и сооружениях. Итоги и перспективы развития Новосибирской области. Не останавливаться на достигнутом.


Главная  Публикации 

Яндекс.Метрика
Copyright © 2006 - 2024 All Rights Reserved