Навигация
Главная
Публикации
 
Рекомендуем
Что такое жидкое стекло
Надувная индустрия
Термодревесина
Композитное топливо
Что такое электромобиль
Принцип инверсии
Швейная промышленность
Промышленный шум
Стекло вручную
Вакуумная упаковка
Увлажнитель воздуха
 
Калькулятор НДС онлайн: nds.com.ru

Главная  Публикации 


Измерение температуры бесконтактным способом при наличии электромагнитных полей и ТВЧ


Если проанализировать требования к приборам и задачи, поставленные нашими заказчиками и потребителями в последние годы, можно заметить возросшую потребность к точному измерению температуры в условиях сильных электромагнитных полей и тяжелых тепловых режимов в месте контроля. Наиболее востребованным представляется проведение измерений температуры металлов во время нагрева в индукционных печах. Мощные электромагнитные поля и конвекционные потоки нагретого воздуха нарушают работоспособность датчиков и измерительных приборов.


Одним из способов решения этой проблемы в пирометрии является разнесение в пространстве приемной оптической системы (оптической головки) и ИК-датчика с блоком электроники посредством оптоволоконного кабеля. На российском рынке представлены модели оптоволоконных пирометров зарубежных фирм, но существенным ограничением их применения в отечественной промышленности является их высокая стоимость и большие затраты при замене специализированного оптоволоконного кабеля (обычный оптоволоконный кабель, применяемый в линиях связи, не подходит для измерения температуры).


В ходе исследований были определены основные требования к оптоволокну как к линии передачи аналогового сигнала: термостойкость; передача достаточной мощности потока излучения на датчик; минимальные изменения сигнала при изгибе кабеля; минимальное воздействие электромагнитных полей и ТВЧ. Была поставлена задача разработать оптоволоконный пирометр и оптоволоконный кабель для него с метрологическими характеристиками на уровне импортных аналогов, но более доступный по стоимости.


От наиболее распространенных из стандартных оптических волокон, применяемых для связи, — с пластиковыми оболочками — пришлось отказаться. Во-первых, рабочий температурный диапазон для них ограничен +70…+80° С, а во-вторых потери при изгибе были слишком большими (из-за тонкой сердцевины).


Оптическое волокно с сердцевиной и оболочкой из кварцевого стекла может выдерживать эксплуатацию при температурах до 600° С и намного более стойко к механическим деформациям. После оценки площади приемных площадок датчиков и технологических возможностей оборудования нами были разработаны и изготовлены оптоволоконный кабель и оптическая приемная головка с оптоволокном из кварцевого стекла, диаметр кварцевой сердцевины 500 мкм. С волокном такого диаметра легко работать, и чувствительность по уровню шумов позволяла измерять температуры с 250°С. Но при испытаниях на изгиб уровень сигнала изменялся на 3–5% из-за ослабления мод высоких порядков. Следовало не допускать моды высоких порядков на входе в оптоволокно.


В конструкцию оптической приемной головки была установлена апертурная диафрагма, которая ограничивала моды высоких порядков. В результате зависимость от изгиба кабеля снизилась до 0,1%.


В качестве внешней защитной оболочки используется металлорукав из нержавеющей стали с внешним диаметром 6 мм, но наличие фторопластовых деталей в конструкции ограничивает температуру эксплуатации до 150° С.


Со стороны, подключаемой к пирометру, кабель электрически изолирован от прибора. Длина кабеля ограничивается только технологией сборки, и в настоящий момент на предприятии освоено изготовление кабеля длиной до 10 м.


Параллельно с разработкой оптоволоконного кабеля велась разработка блока обработки сигнала. Блок обработки не только должен измерять поток излучения и рассчитывать температуру, но и обеспечивать возможность подсветки области измерения для точного наведения в нужное место на объекте. Таким образом, появился первый на предприятии оптоволоконный пирометр ПД-7. Для осуществления подсветки области измерений был выбран самый простой вариант — ручное переключение оптического разъема кабеля при наведении/измерении между соответствующими разъемами пирометра. После наведения оптической головки в нужное место ее кронштейн фиксируется затяжкой винтов, и кабель подключается к измерительному каналу.


Дополнительно пирометр ПД-7 может быть укомплектован специальным металлическим чехлом, на дно которого фокусируется приемник ИК-излучения. Такая схема позволяет измерять температуру среды, в которой находится защитный чехол — аналог термопары.


Технические характеристики пирометра ПД-7 основная приведенная погрешность: 0,5% разрешающая способность: 0,01° C показатель визирования: 1:150 температура окружающей среды: 5…50° C температура эксплуатации оптической головки оптоволоконного кабеля: –40...+150° C коррекция излучательной способности: 0,1–1,5, шаг 0,001 питание: 24 В Для упрощения построения АСУ ТП на базе пирометра ПД-7 был разработан пирометр ПД-10, который может выполнять функции ПИД-регулятора. Прибор подключается к клеммам светодиода твердотельного реле или оптрона, управляющего нагревателями, и к силовой сети 220 или 380 В. Способ регулирования — фазовый. Настройка параметров регулирования осуществляется как при помощи кнопок управления, так и с ПК.


Следующим этапом стало объединение возможности измерения и подсветки. Это особенно актуально в случае, если объекты измерений перемещаются, либо в зоне измерений высокий уровень вибраций, сбивающих наведение. На базе имеющегося оборудования и опыта была разработана технология изготовления многожильного оптоволоконного кабеля. Центральная жила используется для передачи излучения объекта, боковые — для лазерной подсветки. При работе прибора светящиеся точки окружают область измерений. Появляется возможность не только оперативно наводиться в нужное место, но и контролировать размер области измерений и фокусировку.


Такая оптическая схема была использована при разработке пирометра ПД-6, который по функциям (кроме подсветки) и метрологическим характеристикам является аналогом ПД-7. Первые образцы пирометра ПД-6 были переданы на опытную эксплуатацию для измерения температуры при сварке рельсового стыка ТВЧ. Выяснилось, что металлорукав из нержавеющей стали обладает небольшой магнитностью и разогревается ТВЧ, так как находится вблизи места сварки. Приобрести металлорукав из немагнитного материала не удалось, было принято решение разработать и изготовить защитную оболочку своими силами.


Конструкция оболочки представляет собой навитую из немагнитной проволоки пружину с усаженной поверх нее фторопластовой трубкой. Фторопластовая трубка при усадке продавливается вглубь витков пружины и в дальнейшем не дает ей растягиваться, сжиматься, сгибаться с малым радиусом. Стальную проволоку использовать было нельзя, бронзовая также нагревалась, очевидно, из-за посторонних примесей, медная и алюминиевая не обладают нужной жесткостью. Хорошие результаты были получены с копелевой проволокой, применяемой для изготовления термопар. В отличие от металлорукава новая оболочка обладает герметичностью, что важно при измерениях температуры внутри вакуумных установок и т. п., в этом случае место ввода кабеля намного легче загерметизировать. Кабель обладает достаточной гибкостью, его можно проложить внутри установки до места, где обеспечивается прямая видимость объекта контроля. Корпус пирометра изготовлен из алюминия, в конструкции кабеля и оптической головки нет магнитных деталей.


Пирометр также имеет электронный ключ, с помощью которого можно управлять нагревом или сигнализировать о достижении заданной температуры.


Технические характеристики пирометра ПД-6 диапазон измерения температуры, С 300…1000 основная погрешность, %: ± 0,5 показатель визирования: 1:100 напряжение питания, В: 24 ± 0,5 температура окружающей среды, С: 5…50 температура эксплуатации приемника ИК-излучения, С: –40…150 коррекция излучательной способности: 0,1…1,5 (шаг 0,001) спектральный диапазон, мкм: 0,9…1,7 перестраиваемый унифицированный токовый выход, мА: 0–5, 0–20, 4–20 связь с ПК: RS-232 степень защиты от пыли и воды: IP00


Если доступ к объекту ограничен, вблизи объекта слишком высокая температура, высокое напряжение и т. п., то в этом случае целесообразно использовать пирометры с мощной оптикой (высоким показателем визирования) и подсветкой области измерения температуры. Высокий показатель визирования позволит установить пирометр на достаточном расстоянии от объекта. Если площадь объекта мала, либо он частично перекрывается другими деталями, например витками индуктора и т. п., есть возможность проводить измерения за счет высокого показателя визирования и точной фокусировки на объекте. Такими возможностями обладает пирометр ПД-9. Он оснащен объективом с широким диапазоном регулировки и круговым лазерным целеуказателем.


Пирометр подключается к COM-порту компьютера посредством входящего в комплект поставки кабеля с оптопарной развязкой на входе в компьютер, при этом порт компьютера электрически изолирован от цепей прибора.


Необходимое метрологическое оборудование для градуировки, калибровки и поверки пирометров состоит из набора моделей АЧТ на разные диапазоны температур, калиброванных диафрагм, вспомогательного оборудования. На ОАО НПП «Эталон» были разработаны и сертифицированы модели абсолютно черного тела АЧТ-30/900/2500, АЧТ-45/100/1100, АЧТ-100/-40/40, воспроизводящие диапазон температур от –40 до 2500 С. Для поверки тепловизоров разработано и сертифицировано протяженное черное тело с набором мир ПЧТ-540/40/100.


 

ДИАЛЕКТИКА ДАМБЫ. Гидроизоляция транспортных тоннелей. Новый этап компании ОТЛИ. Железные артисты «Группы ГАЗ» на СТТ-2008. Дорожные ограждения барьерного типа снижают аварийность на дорогах. О питьевой воде. Трубы из ВЧШГ — гарантия чистой воды.


Главная  Публикации 

Яндекс.Метрика
Copyright © 2006 - 2024 All Rights Reserved